NH
& JOURNAL OF

\$ e e S31Val
?E GEOMETRY ao>

PHYSICS
ELSEVIER Journal of Geometry and Physics 44 (2002) 52-69

www.elsevier.com/locate/jgp

Geometry of Hamiltoniam-vector fields
in multisymplectic field theory

Cornelius Pauflér Hartmann Rémer

Fakultat fur Physik, Albert-Ludwigs Universitat Freiburg im Breisgau, Hermann-Herder Stral3e 3,
D 79104 Freiburg i. Br., Germany

Received 30 January 2001; received in revised form 15 January 2002

Abstract

Multisymplectic geometry—which originates from the well known De Donder-Weyl (DW)
theory—is a natural framework for the study of classical field theories. Recently, two algebraic
structures have been put forward to encode a given theory algebraically. Those structures are for-
mulated on finite dimensional spaces, which seems to be surprising at first.

In this paper, we investigate the correspondence of Hamiltonian functions and certain antisym-
metric tensor products of vector fields. The latter turn out to be the proper generalisation of the
Hamiltonian vector fields of classical mechanics. Thus we clarify the algebraic description of so-
lutions of the field equations.
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1. Introduction

It has long been known that the appropriate language for classical field theories is the
formalism of jet bundles. Within this framework, the Langrangean variational principle can
be formulated and the Euler—Lagrange equations can be derived. Furthermore, the theorem
of Noethel{13] which relates symmetries of the Lagrange density and conserved quantities
can be given a geometrical interpretation.
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In this paper, we consider first order field theories, i.e. theories which are defined by
a Lagrange density that depends on the fields and their first derivatives only. In this case
the field equations are second order partial differential equations. These equations can
be transformed into a Hamiltonian system on an infinite dimensional space—this is the
canonical Hamiltonian formalism on the space of initial data. One has to distinguish a time
direction in order to define a conjugate momentum for every field coordinate. This results
in breaking Lorentz covariance.

Alternatively, there is a framework that can be formulated on finite dimensional geome-
tries (for a detailed review, we refer[ts]). Moreover, space and time directions are treated in
a covariant way. This approach is known under the name De Donder—Weyl (DW) formalism
or covariant Hamiltonian theory. The paper at hand will stay within this framework.

In contrast to classical mechanics, it introduces more than one conjugated momentum
variable for each degree of freedom. Using a covariant generalisation of the Legendre
transformation of classical mechanics, one can perform the transition from the second
order Euler-Lagrange equations to the first order DW equations. The latter are formulated
for sections of what is called multisymplectic phase space, i.e. smooth maps from the base
manifold into that space. Keeping in mind that trajectories in classical mechanics are maps
from the time axis to phase space, the treatment in the DW formalism is a generalisation to
more than one evolution parameter.

Only recently two algebraic structures have been proposed that encode the up to now
geometrical picture of (partial) differential equations for sections. While Forger and Romer
[4] work on the extended multisymplectic phase spBRdbat generalises the doubly ex-
tended phase space of time dependent symplectic mechanics, Kanatgh8{owses a
space that has one dimension less tRaand can be interpreted as the parameter space of
hypersurfaces of constant DW Hamiltonians. This space will be derffedthe rest of
this paper.

Note that botlP and P are multisymplectic manifolds in the sense of Marfihl{, in
which there is a generalised Darboux theorem) only for very special bufidRegther, we
will use the term in the more general sense of a manifold with a closed, non-degenerate
form [1,5].

The main advantage as compared to ordinary field theoretical Poisson structures is that
the underlying spaceB and P both are finite dimensional. The price one has to pay for
this is that there is more than one conjugated momentum associated with each coordinate
degree of freedom. Up to now, this has been an obstacle to the application of the standard
gquantisation programme.

It remains to understand in which sense the algebraic structures describe the solutions of
the field equations, i.e. the states of the system under consideration.

The idea is that in the case of mechanics there is a correspondence between vector fields
and curves in phase space. The former can be viewed as derivations on the algebra of
smooth functions on the phase space, and can be described by functions that act via the
Poisson bracket if the vector fields are Hamiltonian. In multisymplectic geometry, on the
other hand, curves are replaced by sections of some bundle which consequently are higher
dimensional. Therefore, they are described by a set of tangent vectors at every point which
span a distribution on the extended multisymplectic phase space, i.e. that specify some
subspace of the tangent space at every point. Furthermore, if the distribution is of constant
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Fig. 1. The lifted vectorg, andé, span the tangent space at a point of the sectioifhe two vectors can be
combined to give a 2-vectar. A ¢, that describes this tangent space.

rank (i.e. if the sections do not have kinks), one can pick (in a smooth way) a basis of the
specified subspace in the tangent bundle at every point and combine the basis vectors using
the antisymmetric tensor product of vectors to obtain a multivector field-igeel. This
multivector field is unique up to multiplication by a function and of constant tensor grade.

Kanatchikov was the firstto note that the fundamental relationship of symplectic geometry
between Hamiltonian vector fields; and functionsf given by

XfJ(,() =df, (1)

wherew denotes the symplectic 2-form, can be generalised to cover the multisymplectic
case, in whichw is the multisymplectic form, a closed non-degenefate- 1)-form (n

being the dimension of space—tim¢)is anr-form andX ; has to be a multivector field of
tensor gradén — r). Consequently, iff is a function therX ; has to be am-vector field,

i.e. a multivector field of tensor grade This is a good candidate to describe distributions
that yield sections of the fibre bundle. The link between Hamiltoniamector fields and
solutions of the field equations has already been indicated by KanatchikgvMoreover,

the sense in which multivector fields are related to distributions seems to be folklore and is
written out explicitly in the work by Echevda-Eniiquez et al[3], seeAppendix Aof this
paper. However, both use the smaller multisymplectic phase $padaich requires the
choice of a connectiofi4]. Moreover, we will show inTheorem 3hat for typical cases in

field theory the generalisation ¢f) to P does not admit the interpretation Kify to define

a distribution. Instead, one has to go over to the extended multisymplectic phaséPspace
This is not in contradiction to the results established by Echx&miquez et al. since
they consider an equation different frqtt), namely

Xfa(w—df Ad'x) =0, )

where dx is a volume form on space—time (for non-trivial fibre bundles, terms containing
a connection appear in addition). Therefore, although their investigation proceeds along
similar lines as this paper, the results cannot be taken over to the case of multisymplectic
geometry.

The structure of this paper is as follov&ection 2reviews the basic notions needed for
this paper. In particular, the multisymplectic phase sp@&asd? and the multisymplectic
forms on them are defined and Hamiltonian forms and Hamiltonian multivector fields are
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introducedSection Xontains the main part of this paper. We will establish the link between
solutions of the field equations and multivector fields associated to some appropriately
chosen function in three steps. Firstly, we show that a certain class of functiéhadmits
Hamiltoniann-vector fields that define distributions. Secondly, we show that the leaves of
those distributions, should they exist, are solutions to the field equations that correspond to
the Hamiltonian function which has been chosen in the first place. Thirdly, we investigate
under which conditions the distributions defined by the Hamiltomiarector fields are
integrable. It will turn out that additional input is needed to answer the latter question as there
is a considerable freedom to choose a Hamiltomiarector field for a given Hamiltonian
function. This additional input is provided by a covariant version of the Hamilton—Jacobi
equation. In the end, we will show that the construction cannot be taken ofer to

2. Multisymplectic geometry
2.1. DW equations and multisymplectic phase spaces

Usually, classical field theories are formulated as variational problems for thedields
which are sections of some fibre (vector) bunéllever ann-dimensional base manifold
(space—-time)M—and some Lagrange densify We will assumeM to be orientablel
is a function of the fields and its first derivatives, and one is looking for extremal points of
the action functional

Stp) = /M A2 Lix, o(x). ¢ (X)), @3)

Mathematically,C is a function on the first jet bund@'€ to £ [5,10,16] It is well known
that the extremal points of this functional can be found by solving the field equations—the
celebrated Euler—Lagrange equations

oL oL
Oy (W(w(x» - W(QD(X))) =0. 4)
Here, as in all what followsu, v, p,... = 1,...,n label coordinates on\, while
A, B,C,...=1,..., N stand for those on the fibres &f

If the Lagrange density fulfils some regularity condition, the Euler—Lagrange equations
can be seen to be equivalent to a set of first order equatiorid $¢¥.

oH oH
Py 7 (x, p(x), m(x)) = dup™ (x), —(e(x), m(x)) = =07l (x) )
Ty ap

for the DW Hamiltoniar,

H= 775;3”(/)/‘ - L. (6)
In these equations, the polymomen%are defined as derivatives of the Lagrange density
by the field derivatives,

oL

"
Ty =77
AT 99,04

()
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The regularity conditions t@ ensure that these equations can be used to express the field
derivativesd, ¢* in terms of the fieldg and the polymomenta.

So far we have used sectiopgx), etc. to formulate the equations of motion but it
is useful to consider functions like the DW Hamiltonighwithout evaluating them on
fieldsg(x), etc. To this end, let us introduce coordinatésfor fields,vf} for their space—
time derivatives ang, for the polymomenta function§’). To condense notation, we
will write derivatives w.r.t. the fieldg* asd4, while those w.r.t. the polymomentd;“
will be denoted by 8{}. Together with an additional coordinate, the set of
variables

", v, plh, p) 8)

labels locally the extended multisymplectic phase sfadeerivatives by this extra coor-
dinatep, which itself can be interpreted as the DW energy variable, will be denotéd by
Geometrically,P is the (affine) dual of the first jet bundlgé, i.e. the space of fields and
velocities. One can show that the choice of a local chaftinfluces coordinates g The
set of coordinates

vt pth ©)

can be used to describe locally the multisymplectic phase sPatGéere is a canonical
projection fromP to P which projects out the additional variable With the help of a
volume forme on the base manifoldA we find

. w, I _
P=(UVE* @ TM, P=PaR, (10)

wherefU¢ is the vertical tangent subbundle &&nd R denotes a trivial line bundle ofi
For the latter isomorphism, a connectidhof £ is needed in additiofiL4]. Note that the
tensor products are understood pointwise&on

At this point it is useful to examine the special caseMf happens to be the real
axisR, i.e. if there is only time and no space-like direction. Théns trivial, say& =
R x Q, andJ1€ = R x T Q. The extended multisymplectic phase sp&¢hen be-
comesP = R? x T*Q, which is the doubly extended phase space of a time-dependent
classical mechanical system with configuration sp@cé is in this case the singly ex-
tended phase space. We will, however, suppress the word single in order to keep the names
short.

With these spaces introducedglys. (6) and (7¢an be understood as a map

oL oL
FL: 3 — P, cHovh vd) > [0, = — v — 2] ], (11)
s 3vﬁ‘ s 8vl/j

which is known as Legendre transformation (the syniolis chosen to express that it is
a fibre derivation using the Lagrange density). If the Lagrange density is regular, this map
defines a bijective map frofiL€ to P.
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For convenience, the different spaces introduced so far will be displayed in a diagram
(the mapr will be needed below).

PP = 3(E) —s—— ()

\T /

M (12)

£

2.2. Multisymplectic forms

It has long been known that there are generalisations of symplectic geometry to field
theory. The crucial observation which lead to the development of those generalisations was
that in field theory, solutions are sections (of some fibre bundle), while in classical me-
chanics, solutions are curves. Hence, one can try to treat the sections as higher dimensional
analogues of curves, i.e. treat the space-like coordinates of the fields under investigation
as additional evolution parameters, (3). These efforts culminated in the discovery of
the multisymplectic form, a + 1)-form which is to replace the symplectic 2-form. The
multisymplectic(n + 1)-form is defined on the doubly extended multisymplectic phase
spacepP. In coordinates, it is given by

R j.p = Adply Adyx —dp Adx. (13)

Here, p is a shorthand notation for the polymomemﬁ We refer to the work of Gotay
et al.[5] for a detailed review. Note tha® is an exact form. Using2, one defines pairs
of Hamiltonian multivector fieldsX, X € I'(A*TP), and Hamiltonian formg{ by the
equation

X192 =dH. (14)

From degree counting, it isimmediate tiatan be a form of maximal degrée— 1). If H

is a homogeneous form of degrié|, then the corresponding Hamiltonian multivector field
X has to be arin — |H|)-vector field. Observe that—in contrast to classical mechanics—
neither side is uniquely defined, althoughis non-degenerate on vector fields.

Because of the peculiar combination of field and polymomentum forifiSiyihe depen-
dence of a Hamiltonian form on the coordina}éA‘sis subject to strong restrictions. Unless
H is afunction, it has to be a polynomial of maximal degr&¢in the polymoment§7,14].
There are additional restrictions to the specific form of that polynomial dependence.

On the multisymplectic phase spa@gethere is no such canonical + 1)-form, but one
can separate the first summand®8) and transport it t®. The resultingn + 1)-form is
called vertical multisymplecti¢z + 1)-form. Its coordinate expression is

Rreopp) = dv? A dply Adux + fax,v) dvd Ad'x + gﬁ(x, v, p)dp’y Ad"x.
(15)
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For the construction of2;, a connection of the fibre bundi& has to be chosen. This
choice creates the last two terms in the above formula. Their precise expressions will not
be important for what follows (for them, we refer[®]). UsingI" again, one can define a
vertical exterior derivative d on P, i.e. a map with square zero that takes derivatives with
respect to the vertical directions only, i.e. w.r.t. th‘éandpﬁ variablest Combining$2

and d-, one can ask for solutionX , H) of

Xya2r =drH. (16)

In this caseH is called Hamiltonian form of. Again, the polymomentum dependence of
H is subject to restrictions unlegs is a function.

3. Hamiltonian r-vector fields
3.1. Decomposition of Hamiltonianvector fields

It is a well-known fact[10] that submanifolds can be described by (integrable) distri-
butions, i.e. the determination of some subspace of the tangent bundle at every point of a
manifold. In the appendix, we show that such subspaces of dimemsignin exact corre-
spondence to the decomposablevector fields, i.e. such vector fields that can be written
(locally) as the anti-symmetrised tensor product dfistinct vector fields, cfFig. 1. As
explained in the appendix;dimensional subspaces Bf° are described by suafivector
fields that can be written as thefold antisymmetric tensor product of vector fields. There-
fore, we will examine for which Hamiltoniam-vector fields this property can be achieved.

Theorem 1. Let H € C*°(P) be a function on the multisymplectic phase spac#. 1§ of
the particular form

H(x,v7ﬁ,p)=_H(x7U’ﬁ)_p7 (17)

whereH is an arbitrary function not depending gn then there is a decomposable Hamil-
tonian vector fieldX corresponding tcH .

Remark. The condition onH can be formulated without referring to coordinates.7Ais

an affine bundle oveP with a trivial associated line bundle it carries a fundamental vector
field &, the derivation w.r.t. the-direction. The condition o/ is thens (H) = —1. It will
become clear in the next section why we distinguish the partigui@g@pendence. Note in
particular that this property does not depend on the coordinate system used.

1 Acting on the coordinate functions' andpy, dr yields the corresponding 1-forms that are vertical w.r.t. the
connectionl” that can be induced from and a connection oM, cf. [14] for details.

2 There seems to be no standard terminology for the special elementsifidlieantisymmetric tensor product
of a vector spac® that are of the form

ZiN--NZy e AN(V), Z, V.

In [6, Chapter 3]they are callediecomposablevhile in [2, Section V.1.06]the wordsimpleis used for them.
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Proof. When expressed in coordinates, the condition¥aio be a Hamiltoniam-vector
field to some Hamiltonial € C*(P),

X192 =dH, (18)
where
1 1
X = ;le..-vn avl . avn + (n — 1)| XAul...Un_laAav]- L avnil
1 oV Vy—_10nA 1 V1-Vp—-1
+mXA g Oyy ++ Dy, g + mxo d0yy -+ By, 4
1 . .
MYy xGP 294559, -+ 8,,_, + terms of higher vertical order
amounts to
)" vt A ()" Avre,
daH = (n — 1) A ' 161“,1.,,1,”71, auH = _mx e vy
1 Avgovy 1 vy
WH = =G Xa e Gy Xo e
(_)n+l
0H = TXUJ'MWGVJ_...V”. (19)
Now letZ,, be a set ofi-vectors,
Zy = (Z,) 3y + (Z) 04 + (Z,)40] + (Z1)0d. (20)

The wedge product of al£,,, u = 1,...,n gives (in obvious cases we will omit the
symbolA)

Y=Z1 A AZy= (VDM (V)P €y 1 - - D

n
+ D (HZINZD - (Z) - (Z) " 0abuy - Dy - By,
n=1

n
+ Y (TUZDRED - Z) - (Z0)" 0 0y By,

n=1
+ 3 E(Z)MZD)G ~ (Z)NZWGNZDP - (Zp)Pe - Zy)oo -
H<v

X (Zn)"" 38848, - -- E)/p; -+, -+, + terms of higher vertical order ~ (21)

(In this calculation, a hat on top of a symbol means the omission of that symbol.)
Comparing this taX, one finds in the first place

1
(ZD)M - (Z) "€y, = ;xﬂl“'ﬂnem...un = (=)""oH = (-1)" (22)

Then-vectorsZ,, of (20) define a linear map frorf M to TP for every point orP. Let
us denote this map b¥. Using the canonical projectiomo* of P onto M we obtain a
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map Tn(‘)"OZ from T M to itself. Eq. (22)describes the determinant of this map in the
coordinates chosen. There is a straightforward solution, namely

(Zp)" = -3}, (23)

Itis clear thatifd H = 0 at some point the componeri%, )" of the vector fieldZ,, cannot
be linearly independerf,, one from another and hence cannot spanstfitmensional
tangent space oM.

Comparing the next terms &f and X one obtains

Avy- vn,lev .
(l’l _ 1)| 1 n—10
n —_—
=Y (HZDNZD™ - (Z) - (Zn) " vy
n=1
1 (fvl"'vnq6
(n _ 1)| A V1--Vp—10
n —_—
=Y (U ZIRZD™ - (Z) %+ (Zn) " vy (24)
n=1

Now let(Z,)"” be given by(23). Then

1
B;‘H - MXAVl vn_leul"'vn—lp = (Z,O)A —0aH
1
T =1 W e, 10 = (Zp)) (25)

which obviously is satisfied by
1
(Z)" =9 H, (ZW)Y = _’—laljaAH +(Z' D)% (26)
where the(Z)))!) are arbitrary functions that satisfy
z,)h =0.

Note that the momentum directionsf;, are not given uniquely. In particular, there are no
conditions on the off-diagonal ternig,,) !, , u # v. Itremains to determine the components
(Z,)0, but this can be done using the third line (i9). Indeed, further comparison of
(18)—(21)yields

1 oBvi--v,_2

_m A €p1v1-Vy_202 = (Zpl)B(sz)Z - (Zﬂz)B(Zpl)i- (27)
Using (19) we obtain for a special contraction
1 1
3 H = _m :Avl V”*2€av1~~~vnfzﬂ - mxgl VnilEVl"‘Vn—lll
= —(ZW"Z)% = @ZDNZWY) = (Zwo. (28)

This yields an expression f@Z,, )o in terms of the other components Bf,.
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Eq. (22)shows that ifd H # O then theZ,, are linearly independent (as their horizontal
components are). Hendé # 0. Moreover, the components gf, have been determined
using all of(19). ThusY is a Hamiltonian vector field té/. O

3.2. Solutions define decomposable Hamiltoniarectors

As a next step, we ask what the Hamiltonian O-fofthBave to do with the DW Hamilto-
nian#. Their relation is already indicated in the notatior{bf)and can be guessed further
from (25).

Theorem 2. Lety = (¢, ) be a solution of the DW equati@h) for some DW Hamiltonian
‘H. The tangent space of the imageyofiefines am-vector field which is Hamiltonian with
respect to the functio® given by(17).

Remark. FromLemma A.1 we know that am-vector X is decomposable if and only if
there are: linearly independent vectots, which satisfyZ,, A X = 0. This implies for the
Hamiltoniann-vector fieldsX of the given functiont

0= (XAZ,)2 =2,.dH. (29)

Combining(6) and (11we note tha# vanishes on sectionsthat satisfy the DW equations.
Therefore, itis natural to expectthat A - - - A Z,, is proportional to a Hamiltoniam-vector
field X if the vector fieldsz,, are lifts byy .

Proof. In local coordinates, the sectignis given by
(@) = (9" (1), T4 (), —H(x, 9(x), T(x))). (30)
Letd,, n =1,...,n, be abasis of;,, M. Their respective liftZ,, to TP via y are given
by
Zy=0u 4 0,004 + 8,508 — [0, H + 04 MO, 0" + 823H8, 7510
=0 + 0/ HOA + 0,y 0) — [0, H + daHI, H + 92 H, 7T ]o. (31)

Note that the vector field€,, are not defined on all gP. Rather, they are given on the
image of some local region M undery only.

Let X be a Hamiltoniam-vector field andZ; A - - - A Z,, be a decomposition of it. Using
the calculations of the preceding section, we conclude fEom(23)

(Zp)' = =8, =—(Zy)", (32)
while from (26) it follows that
(Z* =0 H == M1 =—(Z)" (Zly=—-0aH=01H=—(Zn}. (33)
Finally, we compute for the remaining componést,)o
(Zwo = =8, H — daHOH — 93 HIun] = 8uH + (Zo)F(Zw)" — (Zo) (Z)7),
(34)
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which goes over t§28) for (Z,,)o = —(Z,)o, (Z)* = —(Z,)4, and(Z,)", = —(Z,)Y-
Therefore, the set of vector fields

Zy=-Z,, n=1....n (35)

defines a decomposition of a Hamiltonianvector field X of H. This proves the
assertion. 0

Remark. At this point a remark is in order about the peculiar fofha). It is known that
the DW Hamiltonian(6) constitutes a relation among coordinateshahat describes the
image ofF L. If one wants to extract a functioi -, the global Hamiltonian function ¢8],
out of it one needs to employ a connectiorfin

Hr(x, v, p) = H(x, v, p) — phlt(x,v). (36)

Here we have used that every connectior€inan be interpreted as a md&p— J'&.
Furthermore, with the help of the volume formon M for every connection” there is

a special functiorp - on P which uses that points i® are mappings of the image of the
connection". In coordinates,

pr(x,v, p. p) = phlt(x,v) + p. (37)
Combining these two, one obtains a functiirthat is independent af’,
H()C, v, ﬁa P) - —’HF(Xy v, ﬁ) - pF(xv v, ﬁv p) = —H()C, v, ﬁ) — P (38)

3.3. Hamiltoniam-vector fields orP®

One might ask whether a Hamiltoniarvector field oriP can be decomposable as well.
We will show that this is not the case for typical examples. For simplicity we shall assume
that the fibre bundl€ admits a vanishing connection.

Again, we write a general ansatz for thevector fields that shall be combined to give a
Hamiltonianr-vector field.

Zy =8y +(Z,)28a + (Z,)401. (39)
An evaluation of the defining relation

(21/\ "'/\Zn)JQ]" = d[‘I:I (40)
for some functionH yields no condition on thé,-components and the usual ones on the
terms containing one vertical vector, namely

O H = (Z)" — 04H = (Z)}. (41)
Comparing this to the DV#quation (5)we conclude thaf is to be interpreted as the DW
Hamiltonian.

When looking at the 2-vertical components one encounters a difference, because the
dp A d"x-term is missing in2 . Therefore, instead @28) one has

0= (ZW"Z)}y — (Z)NZW)y = -0 HOAH — 0} H (Z,)). (42)
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Now let H be given by
7 - AB
H(x,v, p) = 38 °pliph + V(x, v), (43)

where the functiorV is arbitrary and; andn denote metrics on space—time and the fibre,
respectively. We now have

0= —guo"BphoaV — guon™Bph (Z,)%, (44)

from which by the independence of the polymomepﬁaand the invertibility ofg andn it
follows that

(Z)Y = —810aV. (45)

But this is in contradiction ta}ZM)’jx = -9,V unlesss =1o0ro,V =0.
3.4. Integrability

In the preceding subsections we have seen that Hamiltonian O-forfefahe particular
form

H(x’vvﬁ’p)=_H(xvvaﬁ)_pv (46)

whereH plays the role of the DW Hamiltonian, admit decomposabiector fields which

can be interpreted as distributions # The remaining question is whether there is an
integrable distribution among them. Of course, given a satwéctor fields that span the
distribution under consideration, by the theorem of Frobefiisone just needs to verify

that the vector fields close under the Lie bracket. However, as we have learne@épm

one cannot assign to a given Hamiltonian O-fdtha decompositioX g = Z1A---AZ, in

a unique way. Rather, there is considerable arbitrariness in the choice of the polymomentum
componentsZ,), . This has to be fixed in a satisfactory way. In this section, we will show
that the required additional input comes from solutions of the covariant Hamilton—-Jacobi
equations.

Let us first examine the case of classical mechanics to understand the results below. In
that case, to every time-dependent Hamiltonian there is a unique (time-dependent) vector
field on the doubly extended phase space. Of course, this vector field can be integrated to
yield a family of integral curves. However, the vector field cannot in general be projected
onto the extended (covariant) configuration spRce Q. Rather there is a correspondence
between solutions of the Hamilton—Jacobi equation and set of curvés orQ. More
precisely, one is looking for a map that goes fronR x Q to R2 x T*Q which pulls
back the Hamiltonian vector field onto the extended configuration space. In the case of
classical mechanics, this map happens to be the gradient of another fusickon the
curves thus obtained to be solutions to the equations of motion, the furitt@eds to
satisfy an additional equation, the celebrated Hamilton—Jacobi equation. In the simple case
of classical mechanics this procedure is somewhat superfluous as it adds to the easy to handle
set of ordinary differential equations a partial differential equation, but in the general case
n > 1 this method turns out to be quite helpful.
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Let us come back to the case of a higher dimensional base mafoldere the fibre
bundle€ plays the dle of the extended configuration space, while the extended multisym-
plectic phase spac® replacesR? x T*Q. The desired maff : £ — P, cf. the diagram
(12), has to possess two properties. Firstly, there should be an integrable distribufon on
which is the pull back of some Hamiltoniarvector field to the given functiof . Secondly,
the integral manifolds have to be solutions to the DW equations. Our aim will be to give
necessary and sufficient conditions Brfor the resulting set of integral submanifolds to
be (local) foliations o€. This constitutes, of course, the best possible case, and for general
DW Hamiltonians one will have to lower one’s sights considerably. In this paper, however,
we are aiming at some geometrical picture and will, therefore, leave those matters aside.

Theorem 3. LetH be a regular DW Hamiltonian. Then one can find a local foliatior€ of
where the leave@vhen transported t® by virtue of the covariant Legendre métil)) are
solutions of the DW equations if and only if there is a ifap€ — P that satisfies in some
coordinate system

MNH(x, v, T(x,v)) =0, (47)
9Tl (x,v) = —aaH(x, v, T(x,v)), (48)
9, To(x, v) = —0, H(x, v, T (x, ), (49)
ATy (x,v) = —04To(x, v) (50)

for all points(x, v) in alocal neighbourhood c&f. Here, T = (Tj{) denotes th@ﬁ-compo-
nents of the maf while Tp stands for the value of the-component of.

Remark. If the mapT can be written as a derivative with respect to the field variaifes
of a collection of functions*, u =1, ...,n,

Tj (x,v) = (945")(x, v), To(x, v) = (3, 5")(x, v) (51)

thenthe second setBfys. (48) and (49)s a consequence of the generalised Hamilton—Jacobi
equation for the function§* (cf. [15, Chapter 4, Section P]

S (x, v) + H(x, v, 948" (x,v)) = 0. (52)

Clearly forn = 1the suminthe firstterm reduces to the (“time”) derivative of some function

S, and this equation becomes the Hamilton—Jacobi equation. Note that the right-hand side
of the second equation ¢48) does not transform properly under a change of coordinates.
This corresponds to the fact that if one chooses a different trivialisation, then the solutions
to the DW equations will not be constant anymore. In other words, the transforme@d map
will not satisfy the generalised Hamilton—-Jacobi equations.

Proof of thetheorem. Leti/ be an open subset @ft such that there is a local foliation of
&, i.e. a bijective map

p:VxU—>ETU, (53)
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where) denotes the typical fibre & This defines a local trivialisation @fwhich will be

used for coordinate expressions for the rest of the proof. Furthermore, one obtains a map
T : £ — J€ — P by taking the first jet prolongation of the sectiptw, -) for every point

¢(v, x) and transporting (via the Legendre map) thigtd-rom

@A H) (e, v, L (™, v v)) = v,

wherev gives the value of the derivative w.r.t. thedirection when evaluated on sections,
one concludes the first property. The remaining set of equations then follows from the fact
theg(v, -) are solutions to the DW equations for every elemestV of the typical fibre.
Conversely, letl be a map which fulfils the conditions of the theorem. Then one can
pull back a given decomposition of every Hamiltonian vector field/ab £. Note that the
resulting vector fieldsZ,L are unique once the horizontal component of the Hamiltonian
n-vector field has been fixed as (23). From(26) one concludes that the resulting vector
fields are horizontal in the chosen coordinate system. Therefore, they are integrable. Let

Z,u(x,v, T} (x,v), To(x,v)) =3, + 93, Ty (x, 1))8{,4 — 9, H(x, v, p)a, (54)

uw=1,...,n, ben-vector fields on the image éfunderT (Tp denotes thep-component
of the mapr’). Then, comparing the second set of conditions to the second set of equations
in (25), it follows by virtue of (48) and (49fhatZ; A --- A Z, is indeed a Hamiltonian
n-vector field toH, . 5. = —Hx.0.5) — p- Furthermore, as the tangent vectais on
£ do not have vertical components in this coordinate system, their integral surfaces cannot
intersect. Hence, they describe a local foliatior€ of

Finally, having transported the sections fréwia T to P, their p-components by49)
and (50)can differ from—7{ only by a constant. |

Remark. The extended multisymplectic phase space can be identified with thfmsens
on & that vanish upon contraction with two vertical (w.r.t. the projection oktptangent
vectors or€. In coordinates, one has

(x*, v, Pl p) = pl dv? A dyx 4 pd'x. (55)
Hence, the maf# can be interpreted as arform oné&, andEq. (51)can be interpreted as

T =dS, (56)
while (52) becomes

HodS=0. (57)
The conditiong48)—(50)now can be stated as

d(HoT) =0, dr = 0. (58)

3.5. An example: the free massive Klein—Gordon field

To conclude this paper, we will give an example to show thatthe assumptidbheofem 3
are non-empty.
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Let L be the Lagrange function of the Klein—Gordon field, i.e&lbe a trivial line bundle
overM = ¥ x R =R*and

L(x,v,vp) = 38" vuvy — 3m%v?, (59)

where gV denotes the metric tensor. The Euler-Lagrange equation in this case is the
celebrated Klein—Gordon equation

O +mdP(F, 1) = 0. (60)

As is well known, for every pair of functiong, # € C®(X) there’is a unique function
@ € C*(X x R) given by convolution with certain distributions, A,

D (X, 1) = (A *m)(X, 1) + (A * go) (X, 1), (61)
that satisfies the Klein—Gordaguation (60jand matches with the initial daig :

@(x,0) = p(X), (3 P) (X, 0) = 7 (X). (62)
The corresponding DW Hamiltonian fois given by

H(x, v, p*) = S p"p" + 3m?v2. (63)

Let g, 7 be a pair of initial data and be the corresponding solution. The set of functions
S* on & defined by

SEH, v) = vg"" (3, P) (x) — %¢(X)g“”(3v¢’)(X)- (64)
Clearly theS* satisfy
@pnH) (x, D (x), 3y S (x, @ (x))) = g"" (3, @) (x),
@, SM)(x, P(x)) = —H(x, D(x), 3, 8" (x, @ (x))). (65)
Therefore,
Xy (x,0) =8, + 3, P (x)dy + ((3,S") (x, @ (x)) + (3, @) (x)(3yS”) (x, P (x)))dpv
—OuH+0,HIP(x)+ 0, HI,S" + 0ppH 0,S” 9,P(x))D) (66)

is a decomposition of a Hamiltonian 4-vector fieldtx, v, p*, p) = —H(x, v, p*) — p.

4. Conclusions

We have clarified how-dimensional submanifolds can be described by decomposable
n-fold antisymmetrised tensor products of vector fields. Those multivector fields arise nat-
urally in the context of multisymplectic geometry, &q. (14) The corresponding Hamil-
tonian forms are functions on the extended multisymplectic phase $patfesuch a
Hamiltonian function is of the special form

H(X,U,ﬁ,p)Z—H(X,U,ﬁ)—p, (67)

then is admits a decomposable Hamiltoriawector byTheorem 1
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Conversely, if one is given a solution to the DW equations with Hamiltof{arthen
its associated multivector field is Hamiltonian for the funct{@7). The p-dependence
characterises the orientation of the solution submanifold as compared to the orientation on
the base manifold\. Its origin can be understood in a geometrical way.

Thirdly, given a DW Hamiltonian functio(67), under certain additional conditions which
use a generalisation of the Hamilton—Jacobi theory of classical mechanics, one can find
an integrable Hamiltonian vector field on some subset of the extended multisymplectic
phase space. This multivector field foliates the original fibre bundle where the theory has
been formulated on. However—in contrast to the case of mechanics—one does not have a
unique local foliation of the extended multisymplectic phase sfabg solutions of the
DW equations: even for the mass free scalar wave equation one can have two different
solutions that coincide at one point with all their first derivatives, i.e. polymomenta.

The question of integrability does not arise in classical mechanics as there the equations
of motion are ordinary differential equations.
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Appendix A. Distributions and multivectors

Much of this section seems to folklore by now. We add this material for the sake of com-
pleteness. It can be found for instancd3riLl2]. Usually[10], when considering foliations
of a given manifoldM, one introduces the notion of distributions, i.e. the determination
of a subvector space @fM at every point ofM. Those subvector space can be described
by specifying a basis at every point. This is somewhat ambiguous, but the antisymmetrised
tensor product of the chosen basis is unique up to a pre-factor (the determinant of the basis
transformation). On the other hand, in multisymplectic geometry, the concept of Hamilto-
nian k-vectors naturally arises, so it is plausible to examine the correspondence between
distributions and multivectors.

LemmaA.l. LetV be an(n 4+ m)-dimensional vector space over some figldnd X an
element of the nth antisymmetric tensor product oX € A" V. Then there are linearly
independent vectory; };—1 .., that satisfy

.....

Yi/\XZO
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if and only if
X:)\,Yl/\"'/\Yny

wherex is some element &.

Proof. For the proof, one chooses a basislofthe contains the givefi;. Then every
n-vectorX can be expanded in that basis, and one can successively show that all components
containing the extra basis elements must vanish. a

Obviously, there cannot be more thalinearly independent vectors annihilatifg For
if there were, one would have

OV A Y1 =XAY41=0,

which is a contradiction.

There are, however, special cases apart from the trivial ¥ase A™®V, when the
property of being decomposable is always fulfilled. Namely,Xebe in AXV for k =
dimV — 1. Letg(-, -) be a scalar product ol and=x be the corresponding Hodge star
operation. Then,

E=x%x(X)eV. (A.2)
Letn; be a basis of the orthogonal complement o©bviously
0=g(& m) =+ A*E) =i A XD, (A2)

hencen; A X = 0. From the lemma, we conclude thétis the antisymmetrised tensor
product of allp;. This case corresponds to the situation in three dimensions. There, planes
can be described by 2 linearly independent vectors (which is ambiguous) or by indicating
the vector perpendicular to the plane (which is unique up to a pre-factor). The latter can be
understood as the Hodge dual (w.r.t. the scalar product that defines orthogonality) of the
tensor product of the former two.

On the other hand, |&t = sparie1, ez, e3, ea} and letX = e; A e2 + e3 A e4. One can
easily check that indeed there is no non-zero vectbiat annihilatesy, i.e.

XAv=0 ©v=0. (A.3)

Now we are in the position to formulate in terms of multivector fields the condition of
a distributionE on M to be integrable. A distribution is integrable if every point/of
belongs to some integral manifold &f. Let the distributionE be spanned by a s&v

of vector fields onM at every point. Therjl0, Theorem 3.25F is integrable if\V is
involutive, i.e. is closed under the Lie bracket of vector fields, aridig of constant rank
along the flow lines of all the vector fields B¥. Conversely, the tangent vectors of a given
submanifold define local vector fields that span a distribution of constant rank and which
are in involution.

Lemma A.2. Let Xz be a multivector field that is associated withkalimensional dis-
tribution E on some manifold. ThenE is integrable if and only if there arg linearly
independent local vector fields; that satisfy
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[Xi, X] =1X, X €C®(M), (A.4)

where[-, -] denotes the Schouten bracket, which is a extension of the Lie bracket of vector
fields[17]. For decomposable-vectors, it is given by

yZ}
[X,Y] =ZZ(—)i+j[Xi,Yj]/\Xl/\~~~5(\i~~~Xp/\Y1A~~~1”;-~'~Yq. (A.5)
i=1j=1

Proof. Using (A.5) one verifies thatX;, X] = L, X iff [ X;, X;] = fiijk, but the latter
condition means that the collection of &l} define a distribution which is stable under the
involutive closure of thex;. O
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