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Abstract

Multisymplectic geometry—which originates from the well known De Donder–Weyl (DW)
theory—is a natural framework for the study of classical field theories. Recently, two algebraic
structures have been put forward to encode a given theory algebraically. Those structures are for-
mulated on finite dimensional spaces, which seems to be surprising at first.

In this paper, we investigate the correspondence of Hamiltonian functions and certain antisym-
metric tensor products of vector fields. The latter turn out to be the proper generalisation of the
Hamiltonian vector fields of classical mechanics. Thus we clarify the algebraic description of so-
lutions of the field equations.
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1. Introduction

It has long been known that the appropriate language for classical field theories is the
formalism of jet bundles. Within this framework, the Langrangean variational principle can
be formulated and the Euler–Lagrange equations can be derived. Furthermore, the theorem
of Noether[13] which relates symmetries of the Lagrange density and conserved quantities
can be given a geometrical interpretation.
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In this paper, we consider first order field theories, i.e. theories which are defined by
a Lagrange density that depends on the fields and their first derivatives only. In this case
the field equations are second order partial differential equations. These equations can
be transformed into a Hamiltonian system on an infinite dimensional space—this is the
canonical Hamiltonian formalism on the space of initial data. One has to distinguish a time
direction in order to define a conjugate momentum for every field coordinate. This results
in breaking Lorentz covariance.

Alternatively, there is a framework that can be formulated on finite dimensional geome-
tries (for a detailed review, we refer to[5]). Moreover, space and time directions are treated in
a covariant way. This approach is known under the name De Donder–Weyl (DW) formalism
or covariant Hamiltonian theory. The paper at hand will stay within this framework.

In contrast to classical mechanics, it introduces more than one conjugated momentum
variable for each degree of freedom. Using a covariant generalisation of the Legendre
transformation of classical mechanics, one can perform the transition from the second
order Euler–Lagrange equations to the first order DW equations. The latter are formulated
for sections of what is called multisymplectic phase space, i.e. smooth maps from the base
manifold into that space. Keeping in mind that trajectories in classical mechanics are maps
from the time axis to phase space, the treatment in the DW formalism is a generalisation to
more than one evolution parameter.

Only recently two algebraic structures have been proposed that encode the up to now
geometrical picture of (partial) differential equations for sections. While Forger and Römer
[4] work on the extended multisymplectic phase spaceP that generalises the doubly ex-
tended phase space of time dependent symplectic mechanics, Kanatchikov[7,8] uses a
space that has one dimension less thanP and can be interpreted as the parameter space of
hypersurfaces of constant DW Hamiltonians. This space will be denotedP̃ for the rest of
this paper.

Note that bothP andP̃ are multisymplectic manifolds in the sense of Martin ([11], in
which there is a generalised Darboux theorem) only for very special bundlesE. Rather, we
will use the term in the more general sense of a manifold with a closed, non-degenerate
form [1,5].

The main advantage as compared to ordinary field theoretical Poisson structures is that
the underlying spacesP andP̃ both are finite dimensional. The price one has to pay for
this is that there is more than one conjugated momentum associated with each coordinate
degree of freedom. Up to now, this has been an obstacle to the application of the standard
quantisation programme.

It remains to understand in which sense the algebraic structures describe the solutions of
the field equations, i.e. the states of the system under consideration.

The idea is that in the case of mechanics there is a correspondence between vector fields
and curves in phase space. The former can be viewed as derivations on the algebra of
smooth functions on the phase space, and can be described by functions that act via the
Poisson bracket if the vector fields are Hamiltonian. In multisymplectic geometry, on the
other hand, curves are replaced by sections of some bundle which consequently are higher
dimensional. Therefore, they are described by a set of tangent vectors at every point which
span a distribution on the extended multisymplectic phase space, i.e. that specify some
subspace of the tangent space at every point. Furthermore, if the distribution is of constant
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Fig. 1. The lifted vectors̃ex and ẽy span the tangent space at a point of the sectionΦ. The two vectors can be
combined to give a 2-vector̃ex ∧ ẽy that describes this tangent space.

rank (i.e. if the sections do not have kinks), one can pick (in a smooth way) a basis of the
specified subspace in the tangent bundle at every point and combine the basis vectors using
the antisymmetric tensor product of vectors to obtain a multivector field, seeFig. 1. This
multivector field is unique up to multiplication by a function and of constant tensor grade.

Kanatchikov was the first to note that the fundamental relationship of symplectic geometry
between Hamiltonian vector fieldsXf and functionsf given by

Xf �ω = df, (1)

whereω denotes the symplectic 2-form, can be generalised to cover the multisymplectic
case, in whichω is the multisymplectic form, a closed non-degenerate(n + 1)-form (n
being the dimension of space–time),f is anr-form andXf has to be a multivector field of
tensor grade(n − r). Consequently, iff is a function thenXf has to be ann-vector field,
i.e. a multivector field of tensor graden. This is a good candidate to describe distributions
that yield sections of the fibre bundle. The link between Hamiltoniann-vector fields and
solutions of the field equations has already been indicated by Kanatchikov in[7]. Moreover,
the sense in which multivector fields are related to distributions seems to be folklore and is
written out explicitly in the work by Echeverrı́a-Enŕıquez et al.[3], seeAppendix Aof this
paper. However, both use the smaller multisymplectic phase spaceP̃ which requires the
choice of a connection[14]. Moreover, we will show inTheorem 3that for typical cases in
field theory the generalisation of(1) to P̃ does not admit the interpretation ofXf to define
a distribution. Instead, one has to go over to the extended multisymplectic phase spaceP.
This is not in contradiction to the results established by Echeverrı́a-Enŕıquez et al. since
they consider an equation different from(1), namely

Xf �(ω − df ∧ dnx) = 0, (2)

where dnx is a volume form on space–time (for non-trivial fibre bundles, terms containing
a connection appear in addition). Therefore, although their investigation proceeds along
similar lines as this paper, the results cannot be taken over to the case of multisymplectic
geometry.

The structure of this paper is as follows.Section 2reviews the basic notions needed for
this paper. In particular, the multisymplectic phase spacesP andP̃ and the multisymplectic
forms on them are defined and Hamiltonian forms and Hamiltonian multivector fields are



C. Paufler, H. Römer / Journal of Geometry and Physics 44 (2002) 52–69 55

introduced.Section 3contains the main part of this paper. We will establish the link between
solutions of the field equations and multivector fields associated to some appropriately
chosen function in three steps. Firstly, we show that a certain class of functions onP admits
Hamiltoniann-vector fields that define distributions. Secondly, we show that the leaves of
those distributions, should they exist, are solutions to the field equations that correspond to
the Hamiltonian function which has been chosen in the first place. Thirdly, we investigate
under which conditions the distributions defined by the Hamiltoniann-vector fields are
integrable. It will turn out that additional input is needed to answer the latter question as there
is a considerable freedom to choose a Hamiltoniann-vector field for a given Hamiltonian
function. This additional input is provided by a covariant version of the Hamilton–Jacobi
equation. In the end, we will show that the construction cannot be taken over toP̃.

2. Multisymplectic geometry

2.1. DW equations and multisymplectic phase spaces

Usually, classical field theories are formulated as variational problems for the fieldsϕ—
which are sections of some fibre (vector) bundleE over ann-dimensional base manifold
(space–time)M—and some Lagrange densityL. We will assumeM to be orientable.L
is a function of the fields and its first derivatives, and one is looking for extremal points of
the action functional

S(ϕ) =
∫
M

dnxL(x, ϕ(x), ϕ′(x)). (3)

Mathematically,L is a function on the first jet bundleJ1E to E [5,10,16]. It is well known
that the extremal points of this functional can be found by solving the field equations—the
celebrated Euler–Lagrange equations

∂µ

(
∂L

∂µϕA
(ϕ(x)) − ∂L

∂ϕA
(ϕ(x))

)
= 0. (4)

Here, as in all what follows,µ, ν, ρ, . . . = 1, . . . , n label coordinates onM, while
A,B,C, . . . = 1, . . . , N stand for those on the fibres ofE.

If the Lagrange density fulfils some regularity condition, the Euler–Lagrange equations
can be seen to be equivalent to a set of first order equations (cf.[15])

∂H

∂π
µ
A

(x, ϕ(x), π(x)) = ∂µϕ
A(x),

∂H

∂ϕA
(x, ϕ(x), π(x)) = −∂µπ

µ
A(x) (5)

for the DW HamiltonianH,

H = π
µ
A∂µϕ

A − L. (6)

In these equations, the polymomentaπ
µ
A are defined as derivatives of the Lagrange density

by the field derivatives,

π
µ
A = ∂L

∂∂µϕA
. (7)
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The regularity conditions toL ensure that these equations can be used to express the field
derivatives∂µϕA in terms of the fieldsϕ and the polymomenta.

So far we have used sectionsϕ(x), etc. to formulate the equations of motion but it
is useful to consider functions like the DW HamiltonianH without evaluating them on
fieldsϕ(x), etc. To this end, let us introduce coordinatesvA for fields,vA

µ for their space–
time derivatives andpµ

A for the polymomenta functions(7). To condense notation, we
will write derivatives w.r.t. the fieldsϕA as ∂A, while those w.r.t. the polymomentaπµ

A

will be denoted by ∂A
µ . Together with an additional coordinatep, the set of

variables

(xµ, vA, p
µ
A, p) (8)

labels locally the extended multisymplectic phase spaceP. Derivatives by this extra coor-
dinatep, which itself can be interpreted as the DW energy variable, will be denoted by∂.
Geometrically,P is the (affine) dual of the first jet bundleJ1E, i.e. the space of fields and
velocities. One can show that the choice of a local chart ofE induces coordinates onP. The
set of coordinates

(xµ, vA, p
µ
A) (9)

can be used to describe locally the multisymplectic phase spaceP̃. There is a canonical
projection fromP to P̃ which projects out the additional variablep. With the help of a
volume formω on the base manifoldM we find

P̃
ω∼=(VE)∗ ⊗ TM, P

ω,Γ∼= P̃⊕R, (10)

whereVE is the vertical tangent subbundle ofE andR denotes a trivial line bundle onE.
For the latter isomorphism, a connectionΓ of E is needed in addition[14]. Note that the
tensor products are understood pointwise onE.

At this point it is useful to examine the special case ifM happens to be the real
axis R, i.e. if there is only time and no space-like direction. Then,E is trivial, sayE =
R × Q, andJ1E = R × TQ. The extended multisymplectic phase spaceP then be-
comesP = R2 × T ∗Q, which is the doubly extended phase space of a time-dependent
classical mechanical system with configuration spaceQ. P̃ is in this case the singly ex-
tended phase space. We will, however, suppress the word single in order to keep the names
short.

With these spaces introduced,Eqs. (6) and (7)can be understood as a map

FL : J1E→ P, (xµ, vA, vA
µ) →

(
xµ, vA,

∂L

∂vA
µ

,−
(
vA
µ

∂L

∂vA
µ

− L
))

, (11)

which is known as Legendre transformation (the symbolFL is chosen to express that it is
a fibre derivation using the Lagrange density). If the Lagrange density is regular, this map
defines a bijective map fromJ1E to P̃.
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For convenience, the different spaces introduced so far will be displayed in a diagram
(the mapT will be needed below).

(12)

2.2. Multisymplectic forms

It has long been known that there are generalisations of symplectic geometry to field
theory. The crucial observation which lead to the development of those generalisations was
that in field theory, solutions are sections (of some fibre bundle), while in classical me-
chanics, solutions are curves. Hence, one can try to treat the sections as higher dimensional
analogues of curves, i.e. treat the space-like coordinates of the fields under investigation
as additional evolution parameters, cf.(5). These efforts culminated in the discovery of
the multisymplectic form, an(n + 1)-form which is to replace the symplectic 2-form. The
multisymplectic(n + 1)-form is defined on the doubly extended multisymplectic phase
spaceP. In coordinates, it is given by

Ω(x,v, p,p) = dvA ∧ dpµ
A ∧ dµx − dp ∧ dx. (13)

Here, p is a shorthand notation for the polymomentap
µ
A. We refer to the work of Gotay

et al. [5] for a detailed review. Note thatΩ is an exact form. UsingΩ, one defines pairs
of Hamiltonian multivector fieldsX, X ∈ Γ (Λ∗TP), and Hamiltonian formsH by the
equation

X�Ω = dH. (14)

From degree counting, it is immediate thatH can be a form of maximal degree(n−1). If H
is a homogeneous form of degree|H |, then the corresponding Hamiltonian multivector field
X has to be an(n − |H |)-vector field. Observe that—in contrast to classical mechanics—
neither side is uniquely defined, althoughΩ is non-degenerate on vector fields.

Because of the peculiar combination of field and polymomentum forms in(13)the depen-
dence of a Hamiltonian form on the coordinatesp

µ
A is subject to strong restrictions. Unless

H is a function, it has to be a polynomial of maximal degree|H | in the polymomenta[7,14].
There are additional restrictions to the specific form of that polynomial dependence.

On the multisymplectic phase spaceP̃, there is no such canonical(n + 1)-form, but one
can separate the first summand of(13) and transport it tõP. The resulting(n + 1)-form is
called vertical multisymplectic(n + 1)-form. Its coordinate expression is

ΩΓ (x,v, p,p) = dvA ∧ dpµ
A ∧ dµx + fA(x, v)dvA ∧ dnx + gA

µ(x, v, p)dpµ
A ∧ dnx.

(15)
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For the construction ofΩΓ , a connection of the fibre bundleE has to be chosen. This
choice creates the last two terms in the above formula. Their precise expressions will not
be important for what follows (for them, we refer to[3]). UsingΓ again, one can define a
vertical exterior derivative dΓ on P̃, i.e. a map with square zero that takes derivatives with
respect to the vertical directions only, i.e. w.r.t. thevA andp

µ
A variables.1 CombiningΩΓ

and dΓ , one can ask for solutions(XH ,H) of

XH�ΩΓ = dΓ H. (16)

In this case,H is called Hamiltonian form oñP. Again, the polymomentum dependence of
H is subject to restrictions unlessH is a function.

3. Hamiltonian n-vector fields

3.1. Decomposition of Hamiltoniann-vector fields

It is a well-known fact[10] that submanifolds can be described by (integrable) distri-
butions, i.e. the determination of some subspace of the tangent bundle at every point of a
manifold. In the appendix, we show that such subspaces of dimensionn are in exact corre-
spondence to the decomposable2 n-vector fields, i.e. such vector fields that can be written
(locally) as the anti-symmetrised tensor product ofn distinct vector fields, cf.Fig. 1. As
explained in the appendix,n-dimensional subspaces ofTP are described by suchn-vector
fields that can be written as then-fold antisymmetric tensor product of vector fields. There-
fore, we will examine for which Hamiltoniann-vector fields this property can be achieved.

Theorem 1. LetH ∈ C∞(P) be a function on the multisymplectic phase space. IfH is of
the particular form

H(x, v, p, p) = −H(x, v, p) − p, (17)

whereH is an arbitrary function not depending onp, then there is a decomposable Hamil-
tonian vector fieldX corresponding toH .

Remark. The condition onH can be formulated without referring to coordinates. AsP is
an affine bundle over̃P with a trivial associated line bundle it carries a fundamental vector
field ξ , the derivation w.r.t. thep-direction. The condition onH is thenξ(H) = −1. It will
become clear in the next section why we distinguish the particularp-dependence. Note in
particular that this property does not depend on the coordinate system used.

1 Acting on the coordinate functionsvA andpµ
A, dΓ yields the corresponding 1-forms that are vertical w.r.t. the

connectionΓ̄ that can be induced fromΓ and a connection onM, cf. [14] for details.
2 There seems to be no standard terminology for the special elements in then-fold antisymmetric tensor product

of a vector spaceV that are of the form

Z1 ∧ · · · ∧ Zn ∈ Λn(V ), Zµ ∈ V.

In [6, Chapter 3], they are calleddecomposable, while in [2, Section V.1.06], the wordsimpleis used for them.



C. Paufler, H. Römer / Journal of Geometry and Physics 44 (2002) 52–69 59

Proof. When expressed in coordinates, the condition forX to be a Hamiltoniann-vector
field to some HamiltonianH ∈ C∞(P),

X�Ω = dH, (18)

where

X = 1

n!
Xν1···νn∂ν1 · · · ∂νn + 1

(n − 1)!
XAν1···νn−1∂A∂ν1 · · · ∂νn−1

+ 1

(n − 1)!
X

σν1···νn−1
A ∂A

σ ∂ν1 · · · ∂νn−1 + 1

(n − 1)!
X

ν1···νn−1
0 ∂∂ν1 · · · ∂νn−1

+ 1

(n − 2)!
X

σBν1···νn−2
A ∂A

σ ∂B∂ν1 · · · ∂νn−2 + terms of higher vertical order,

amounts to

∂AH = (−)n

(n − 1)!
X

µν1···νn−1
A εµν1···νn−1, ∂A

µH = − (−)n

(n − 1)!
XAν1···νn−1εµν1···νn−1,

∂µH = − 1

(n − 2)!
X

σAν1···νn−2
A εσν1···νn−2µ − 1

(n − 1)!
X

ν1···νn−1
0 εν1···νn−1µ,

∂H = (−)n+1

n!
Xν1···νnεν1···νn . (19)

Now letZµ be a set ofn-vectors,

Zµ = (Zµ)
ν∂ν + (Zµ)

A∂A + (Zµ)
ν
A∂

A
ν + (Zµ)0∂. (20)

The wedge product of allZµ, µ = 1, . . . , n gives (in obvious cases we will omit the
symbol∧)

Y = Z1 ∧ · · · ∧ Zn = (Y1)
µ1 · · · (Yn)

µnεµ1···µn∂x1 · · · ∂xn

+
n∑

µ=1

(−)µ+1(Zµ)
A(Z1)

ν1 · · · (̂Zµ)
νµ · · · (Zn)

νn∂A∂ν1 · · · ∂̂νµ · · · ∂νn

+
n∑

µ=1

(−)µ+1(Zµ)
σ
A(Z1)

ν1 · · · (̂Zµ)
νµ · · · (Zn)

νn∂A
σ ∂ν1 · · · ∂̂νµ · · · ∂νn

+
∑
µ<ν

(−)µ+ν((Zµ)
A(Zν)

σ
B − (Zν)

A(Zµ)
σ
B)(Z1)

ρ1 · · · (̂Zµ)
ρµ · · · (̂Zν)ρν · · ·

× (Zn)
ρn∂B

σ ∂A∂ρ1 · · · ∂̂ρµ · · · ∂̂ρν · · · ∂ρn + terms of higher vertical order. (21)

(In this calculation, a hat on top of a symbol means the omission of that symbol.)
Comparing this toX, one finds in the first place

(Z1)
µ1 · · · (Zn)

µnεµ1···µn = 1

n!
Xµ1···µnεµ1···µn = (−)n+1∂H = (−1)n (22)

Then-vectorsZµ of (20) define a linear map fromTM to TP for every point onP. Let

us denote this map byZ. Using the canonical projectionπ�
0 of P ontoM we obtain a
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mapT π�
0 �Z from TM to itself. Eq. (22)describes the determinant of this map in the

coordinates chosen. There is a straightforward solution, namely

(Zµ)
ν = −δνµ. (23)

It is clear that if∂H = 0 at some point the components(Zµ)
ν of the vector fieldsZµ cannot

be linearly independentZµ one from another and hence cannot span then-dimensional
tangent space onM.

Comparing the next terms ofY andX one obtains

1

(n − 1)!
XAν1···νn−1εν1···νn−1ρ

=
n∑

µ=1

(−)µ+1(Zµ)
A(Z1)

ν1 · · · (̂Zµ)
νµ · · · (Zn)

νnεν1···ν̂µ···νnρ,

1

(n − 1)!
X

σν1···νn−1
A εν1···νn−1ρ

=
n∑

µ=1

(−)µ+1(Zµ)
σ
A(Z1)

ν1 · · · (̂Zµ)
νµ · · · (Zn)

νnεν1···ν̂µ···νnρ. (24)

Now let (Zµ)
ν be given by(23). Then

∂A
ρ H = 1

(n − 1)!
XAν1···νn−1εν1···νn−1ρ = (Zρ)

A − ∂AH

= 1

(n − 1)!
X

ρν1···νn−1
A εν1···νn−1ρ = (Zρ)

ρ
A, (25)

which obviously is satisfied by

(Zµ)
A = ∂A

µH, (Zµ)
ν
A = −1

n
δνµ∂AH + (Z′

µ)
ν
A, (26)

where the(Z′
µ)

ν
A are arbitrary functions that satisfy

(Z′
µ)

µ
A = 0.

Note that the momentum directions ofZµ are not given uniquely. In particular, there are no
conditions on the off-diagonal terms(Zµ)

ν
A,µ �= ν. It remains to determine the components

(Zµ)0, but this can be done using the third line in(19). Indeed, further comparison of
(18)–(21)yields

− 1

(n − 2)!
X

σBν1···νn−2
A ερ1ν1···νn−2ρ2 = (Zρ1)

B(Zρ2)
σ
A − (Zρ2)

B(Zρ1)
σ
A. (27)

Using(19)we obtain for a special contraction

∂µH = − 1

(n − 2)!
X

σAν1···νn−2
A εσν1···νn−2µ − 1

(n − 1)!
X

ν1···νn−1
0 εν1···νn−1µ

= −((Zµ)
A(Zν)

ν
A − (Zν)

A(Zµ)
ν
A) − (Zµ)0. (28)

This yields an expression for(Zµ)0 in terms of the other components ofZµ.
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Eq. (22)shows that if∂H �= 0 then theZµ are linearly independent (as their horizontal
components are). HenceY �= 0. Moreover, the components ofZµ have been determined
using all of(19). ThusY is a Hamiltonian vector field toH . �

3.2. Solutions define decomposable Hamiltoniann-vectors

As a next step, we ask what the Hamiltonian 0-formsH have to do with the DW Hamilto-
nianH. Their relation is already indicated in the notation of(17)and can be guessed further
from (25).

Theorem 2. Letγ = (ϕ, π) be a solution of the DW equation(5) for some DW Hamiltonian
H. The tangent space of the image ofγ defines ann-vector field which is Hamiltonian with
respect to the functionH given by(17).

Remark. FromLemma A.1, we know that ann-vectorX is decomposable if and only if
there aren linearly independent vectorsZµ which satisfyZµ ∧X = 0. This implies for the
Hamiltoniann-vector fieldsX of the given functionH

0 = (X ∧ Zµ)�Ω = Zµ�dH. (29)

Combining(6) and (11)we note thatH vanishes on sectionsγ that satisfy the DW equations.
Therefore, it is natural to expect thatZ1∧· · ·∧Zn is proportional to a Hamiltoniann-vector
field X if the vector fieldsZµ are lifts byγ .

Proof. In local coordinates, the sectionγ is given by

γ (x) = (ϕA(x), πν
A(x),−H(x, ϕ(x), π(x))). (30)

Let ∂µ, µ = 1, . . . , n, be a basis ofTmM. Their respective liftsZµ to TP via γ are given
by

Zµ = ∂µ + ∂µϕ
A∂A + ∂µπ

ν
A∂

A
ν − [∂µH+ ∂AH∂µϕ

A + ∂A
σ H∂µπ

σ
A ]∂

= ∂µ + ∂A
µH∂A + ∂µπ

ν
A∂

A
ν − [∂µH+ ∂AH∂A

µH+ ∂A
σ H∂µπ

σ
A ]∂. (31)

Note that the vector fieldsZµ are not defined on all ofP. Rather, they are given on the
image of some local region inM underγ only.

LetX be a Hamiltoniann-vector field andZ̃1 ∧ · · · ∧ Z̃n be a decomposition of it. Using
the calculations of the preceding section, we conclude fromEq. (23)

(Z̃µ)
ν = −δνµ = −(Zµ)

ν, (32)

while from(26) it follows that

(Z̃µ)
A = ∂A

µH = −∂A
µH = −(Zµ)

A, (Z̃µ)
µ
A = −∂AH = ∂AH = −(Zµ)

µ
A. (33)

Finally, we compute for the remaining component(Zµ)0

(Zµ)0 = −∂µH− ∂AH∂A
µH− ∂A

σ H∂µπ
σ
A = ∂µH + ((Zσ )

σ
A(Zµ)

A − (Zσ )
A(Zµ)

σ
A),

(34)
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which goes over to(28) for (Z̃µ)0 = −(Zµ)0, (Z̃µ)
A = −(Zµ)

A, and(Z̃µ)
ν
A = −(Zµ)

ν
A.

Therefore, the set of vector fields

Z̃µ = −Zµ, µ = 1, . . . , n (35)

defines a decomposition of a Hamiltoniann-vector field X of H . This proves the
assertion. �

Remark. At this point a remark is in order about the peculiar form(17). It is known that
the DW Hamiltonian(6) constitutes a relation among coordinates ofP that describes the
image ofFL. If one wants to extract a functionHΓ , the global Hamiltonian function of[3],
out of it one needs to employ a connection inE,

HΓ (x, v, p) = H(x, v, p) − p
µ
AΓ

A
µ (x, v). (36)

Here we have used that every connection inE can be interpreted as a mapE → J1E.
Furthermore, with the help of the volume formω onM for every connectionΓ there is
a special functionpΓ onP which uses that points inP are mappings of the image of the
connectionΓ . In coordinates,

pΓ (x, v, p, p) = p
µ
AΓ

A
µ (x, v) + p. (37)

Combining these two, one obtains a functionH that is independent ofΓ ,

H(x, v, p, p) = −HΓ (x, v, p) − pΓ (x, v, p, p) = −H(x, v, p) − p. (38)

3.3. Hamiltoniann-vector fields oñP

One might ask whether a Hamiltoniann-vector field onP̃ can be decomposable as well.
We will show that this is not the case for typical examples. For simplicity we shall assume
that the fibre bundleE admits a vanishing connection.

Again, we write a general ansatz for then-vector fields that shall be combined to give a
Hamiltoniann-vector field.

Z̃µ = ∂µ + (Z̃µ)
A∂A + (Z̃µ)

ν
A∂

A
ν . (39)

An evaluation of the defining relation

(Z̃1 ∧ · · · ∧ Z̃n)�ΩΓ = dΓ H̃ (40)

for some functionH̃ yields no condition on the∂µ-components and the usual ones on the
terms containing one vertical vector, namely

∂A
ρ H̃ = (Z̃ρ)

A − ∂AH̃ = (Z̃ρ)
ρ
A. (41)

Comparing this to the DWequation (5)we conclude thatH̃ is to be interpreted as the DW
Hamiltonian.

When looking at the 2-vertical components one encounters a difference, because the
dp ∧ dnx-term is missing inΩΓ . Therefore, instead of(28)one has

0 = (Z̃µ)
A(Z̃ν)

ν
A − (Z̃ν)

A(Z̃µ)
ν
A = −∂A

µ H̃∂AH̃ − ∂A
µ H̃ (Z̃µ)

ν
A. (42)
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Now let H̃ be given by

H̃ (x, v, p) = 1
2gµνη

ABp
µ
Ap

ν
B + V (x, v), (43)

where the functionV is arbitrary andg andη denote metrics on space–time and the fibre,
respectively. We now have

0 = −gµρη
ABp

ρ
B∂AV − gνρη

ABp
ρ
B (Z̃µ)

ν
A, (44)

from which by the independence of the polymomentap
µ
A and the invertibility ofg andη it

follows that

(Z̃µ)
ν
A = −δµν ∂AV . (45)

But this is in contradiction to(Z̃µ)
µ
A = −∂AV unlessn = 1 or ∂AV = 0.

3.4. Integrability

In the preceding subsections we have seen that Hamiltonian 0-forms onP of the particular
form

H(x, v, p, p) = −H(x, v, p) − p, (46)

whereH plays the role of the DW Hamiltonian, admit decomposablen-vector fields which
can be interpreted as distributions onP. The remaining question is whether there is an
integrable distribution among them. Of course, given a set ofn-vector fields that span the
distribution under consideration, by the theorem of Frobenius[10] one just needs to verify
that the vector fields close under the Lie bracket. However, as we have learned from(26),
one cannot assign to a given Hamiltonian 0-formH a decompositionXH = Z1∧· · ·∧Zn in
a unique way. Rather, there is considerable arbitrariness in the choice of the polymomentum
components(Zµ)

ν
A. This has to be fixed in a satisfactory way. In this section, we will show

that the required additional input comes from solutions of the covariant Hamilton–Jacobi
equations.

Let us first examine the case of classical mechanics to understand the results below. In
that case, to every time-dependent Hamiltonian there is a unique (time-dependent) vector
field on the doubly extended phase space. Of course, this vector field can be integrated to
yield a family of integral curves. However, the vector field cannot in general be projected
onto the extended (covariant) configuration spaceR ×Q. Rather there is a correspondence
between solutions of the Hamilton–Jacobi equation and set of curves onR × Q. More
precisely, one is looking for a mapT that goes fromR × Q to R2 × T ∗Q which pulls
back the Hamiltonian vector field onto the extended configuration space. In the case of
classical mechanics, this map happens to be the gradient of another functionS. For the
curves thus obtained to be solutions to the equations of motion, the functionS needs to
satisfy an additional equation, the celebrated Hamilton–Jacobi equation. In the simple case
of classical mechanics this procedure is somewhat superfluous as it adds to the easy to handle
set of ordinary differential equations a partial differential equation, but in the general case
n > 1 this method turns out to be quite helpful.
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Let us come back to the case of a higher dimensional base manifoldM. Here the fibre
bundleE plays the r̂ole of the extended configuration space, while the extended multisym-
plectic phase spaceP replacesR2 × T ∗Q. The desired mapT : E → P, cf. the diagram
(12), has to possess two properties. Firstly, there should be an integrable distribution onE
which is the pull back of some Hamiltoniann-vector field to the given functionH . Secondly,
the integral manifolds have to be solutions to the DW equations. Our aim will be to give
necessary and sufficient conditions onT for the resulting set of integral submanifolds to
be (local) foliations ofE. This constitutes, of course, the best possible case, and for general
DW Hamiltonians one will have to lower one’s sights considerably. In this paper, however,
we are aiming at some geometrical picture and will, therefore, leave those matters aside.

Theorem 3. LetH be a regular DW Hamiltonian. Then one can find a local foliation ofE
where the leaves(when transported toP by virtue of the covariant Legendre map(11)) are
solutions of the DW equations if and only if there is a mapT : E→ P that satisfies in some
coordinate system

∂A
µH(x, v, T (x, v)) = 0, (47)

∂µT
µ
A (x, v) = −∂AH(x, v, T (x, v)), (48)

∂µT0(x, v) = −∂µH(x, v, T (x, v)), (49)

∂µT
µ
A (x, v) = −∂AT0(x, v) (50)

for all points(x, v) in a local neighbourhood ofE. Here, T = (T
µ
A ) denotes thepµ

A-compo-
nents of the mapT whileT0 stands for the value of thep-component ofT .

Remark. If the mapT can be written as a derivative with respect to the field variablesvA

of a collection of functionsSµ, µ = 1, . . . , n,

T
µ
A (x, v) = (∂AS

µ)(x, v), T0(x, v) = (∂µS
µ)(x, v) (51)

then the second set ofEqs. (48) and (49), is a consequence of the generalised Hamilton–Jacobi
equation for the functionsSµ (cf. [15, Chapter 4, Section 2]),

∂µS
µ(x, v) +H(x, v, ∂AS

µ(x, v)) = 0. (52)

Clearly forn = 1 the sum in the first term reduces to the (“time”) derivative of some function
S, and this equation becomes the Hamilton–Jacobi equation. Note that the right-hand side
of the second equation of(48) does not transform properly under a change of coordinates.
This corresponds to the fact that if one chooses a different trivialisation, then the solutions
to the DW equations will not be constant anymore. In other words, the transformed mapT

will not satisfy the generalised Hamilton–Jacobi equations.

Proof of the theorem. LetU be an open subset ofM such that there is a local foliation of
E, i.e. a bijective map

ϕ : V× U→ E � U, (53)
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whereV denotes the typical fibre ofE. This defines a local trivialisation ofE which will be
used for coordinate expressions for the rest of the proof. Furthermore, one obtains a map
T : E→ J1E→ P by taking the first jet prolongation of the sectionϕ(v, ·) for every point
ϕ(v, x) and transporting (via the Legendre map) this toP. From

(∂A
µH)(xµ, vA, (∂

µ
AL)(xµ, vA, vA

µ)) = vA
µ,

wherevA
µ gives the value of the derivative w.r.t. theµ-direction when evaluated on sections,

one concludes the first property. The remaining set of equations then follows from the fact
theϕ(v, ·) are solutions to the DW equations for every elementv ∈ V of the typical fibre.

Conversely, letT be a map which fulfils the conditions of the theorem. Then one can
pull back a given decomposition of every Hamiltonian vector field ofH to E. Note that the
resulting vector fields̃Zµ are unique once the horizontal component of the Hamiltonian
n-vector field has been fixed as in(23). From(26) one concludes that the resulting vector
fields are horizontal in the chosen coordinate system. Therefore, they are integrable. Let

Zµ(x, v, T
ν
A(x, v), T0(x, v)) = ∂µ + ∂µT

ν
A(x, v)∂A

ν − ∂µH(x, v, p)∂, (54)

µ = 1, . . . , n, ben-vector fields on the image ofE underT (T0 denotes thep-component
of the mapT ). Then, comparing the second set of conditions to the second set of equations
in (25), it follows by virtue of (48) and (49)thatZ1 ∧ · · · ∧ Zn is indeed a Hamiltonian
n-vector field toH(x,v, p,p) = −H(x,v, p) − p. Furthermore, as the tangent vectorsZ̃µ on
E do not have vertical components in this coordinate system, their integral surfaces cannot
intersect. Hence, they describe a local foliation ofE.

Finally, having transported the sections fromE via T to P, theirp-components by(49)
and (50)can differ from−H only by a constant. �

Remark. The extended multisymplectic phase space can be identified with thosen-forms
on E that vanish upon contraction with two vertical (w.r.t. the projection ontoM) tangent
vectors onE. In coordinates, one has

(xµ, vA, p
µ
A, p) ∼= p

µ
A dvA ∧ dµx + p dnx. (55)

Hence, the mapT can be interpreted as ann-form onE, andEq. (51)can be interpreted as

T = dS, (56)

while (52)becomes

H ◦ dS = 0. (57)

The conditions(48)–(50)now can be stated as

d(H ◦ T ) = 0, dT = 0. (58)

3.5. An example: the free massive Klein–Gordon field

To conclude this paper, we will give an example to show that the assumptions ofTheorem 3
are non-empty.
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LetL be the Lagrange function of the Klein–Gordon field, i.e. letE be a trivial line bundle
overM = Σ × R = R4 and

L(x, v, vµ) = 1
2g

µνvµvν − 1
2m

2v2, (59)

wheregµν denotes the metric tensor. The Euler–Lagrange equation in this case is the
celebrated Klein–Gordon equation

(� + m2)Φ(x, t) = 0. (60)

As is well known, for every pair of functionsϕ, π ∈ C∞(Σ) there is a unique function
Φ ∈ C∞(Σ × R) given by convolution with certain distributions∆, ∆̇,

Φ(x, t) = (∆ ∗ π0)(x, t) + (∆̇ ∗ ϕ0)(x, t), (61)

that satisfies the Klein–Gordonequation (60)and matches with the initial dataϕ, π :

Φ(x,0) = ϕ(x), (∂tΦ)(x,0) = π(x). (62)

The corresponding DW Hamiltonian toL is given by

H(x, v, pµ) = 1
2gµνp

µpν + 1
2m

2v2. (63)

Let ϕ, π be a pair of initial data andΦ be the corresponding solution. The set of functions
Sµ onE defined by

Sµ(xµ, v) = vgµν(∂µΦ)(x) − 1
2Φ(x)gµν(∂νΦ)(x). (64)

Clearly theSµ satisfy

(∂pµH)(x,Φ(x), ∂vS
µ(x,Φ(x))) = gµν(∂νΦ)(x),

(∂µS
µ)(x,Φ(x)) = −H(x,Φ(x), ∂vS

µ(x,Φ(x))). (65)

Therefore,

Xµ(x, v) = ∂µ + ∂µΦ(x)∂v + ((∂µS
ν)(x,Φ(x)) + (∂µΦ)(x)(∂vS

ν)(x,Φ(x)))∂pν

− (∂µH+ ∂vH ∂µΦ(x) + ∂pνH ∂µS
ν + ∂pνH ∂vS

ν ∂µΦ(x))∂p (66)

is a decomposition of a Hamiltonian 4-vector field ofH(x, v, pµ, p) = −H(x, v, pµ)−p.

4. Conclusions

We have clarified hown-dimensional submanifolds can be described by decomposable
n-fold antisymmetrised tensor products of vector fields. Those multivector fields arise nat-
urally in the context of multisymplectic geometry, cf.Eq. (14). The corresponding Hamil-
tonian forms are functions on the extended multisymplectic phase spaceP. If such a
Hamiltonian function is of the special form

H(x, v, p, p) = −H(x, v, p) − p, (67)

then is admits a decomposable Hamiltoniann-vector byTheorem 1.
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Conversely, if one is given a solution to the DW equations with HamiltonianH, then
its associated multivector field is Hamiltonian for the function(67). Thep-dependence
characterises the orientation of the solution submanifold as compared to the orientation on
the base manifoldM. Its origin can be understood in a geometrical way.

Thirdly, given a DW Hamiltonian function(67), under certain additional conditions which
use a generalisation of the Hamilton–Jacobi theory of classical mechanics, one can find
an integrable Hamiltonian vector field on some subset of the extended multisymplectic
phase space. This multivector field foliates the original fibre bundle where the theory has
been formulated on. However—in contrast to the case of mechanics—one does not have a
unique local foliation of the extended multisymplectic phase spaceP by solutions of the
DW equations: even for the mass free scalar wave equation one can have two different
solutions that coincide at one point with all their first derivatives, i.e. polymomenta.

The question of integrability does not arise in classical mechanics as there the equations
of motion are ordinary differential equations.
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Appendix A. Distributions and multivectors

Much of this section seems to folklore by now. We add this material for the sake of com-
pleteness. It can be found for instance in[3,12]. Usually[10], when considering foliations
of a given manifoldM, one introduces the notion of distributions, i.e. the determination
of a subvector space ofTM at every point ofM. Those subvector space can be described
by specifying a basis at every point. This is somewhat ambiguous, but the antisymmetrised
tensor product of the chosen basis is unique up to a pre-factor (the determinant of the basis
transformation). On the other hand, in multisymplectic geometry, the concept of Hamilto-
nian k-vectors naturally arises, so it is plausible to examine the correspondence between
distributions and multivectors.

Lemma A.1. LetV be an(n + m)-dimensional vector space over some fieldK andX an
element of the nth antisymmetric tensor product ofV , X ∈ ΛnV . Then there aren linearly
independent vectors{Yi}i=1,...,n that satisfy

Yi ∧ X = 0
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if and only if

X = λY1 ∧ · · · ∧ Yn,

whereλ is some element ofK.

Proof. For the proof, one chooses a basis ofV the contains the givenYi . Then every
n-vectorX can be expanded in that basis, and one can successively show that all components
containing the extra basis elements must vanish. �

Obviously, there cannot be more thann linearly independent vectors annihilatingX. For
if there were, one would have

0 �= Y1 ∧ · · ·Yn+1 = X ∧ Yn+1 = 0,

which is a contradiction.
There are, however, special cases apart from the trivial caseX ∈ ΛmaxV , when the

property of being decomposable is always fulfilled. Namely, letX be in ΛkV for k =
dimV − 1. Let g(·, ·) be a scalar product onV and∗ be the corresponding Hodge star
operation. Then,

ξ = ∗(X) ∈ V. (A.1)

Let ηi be a basis of the orthogonal complement ofξ . Obviously

0 = g(ξ, ηi) = ∗−1(ηi ∧ ∗ξ) = ∗−1(ηi ∧ X), (A.2)

henceηi ∧ X = 0. From the lemma, we conclude thatX is the antisymmetrised tensor
product of allηi . This case corresponds to the situation in three dimensions. There, planes
can be described by 2 linearly independent vectors (which is ambiguous) or by indicating
the vector perpendicular to the plane (which is unique up to a pre-factor). The latter can be
understood as the Hodge dual (w.r.t. the scalar product that defines orthogonality) of the
tensor product of the former two.

On the other hand, letV = span{e1, e2, e3, e4} and letX = e1 ∧ e2 + e3 ∧ e4. One can
easily check that indeed there is no non-zero vectorv that annihilatesX, i.e.

X ∧ v = 0 ⇔ v = 0. (A.3)

Now we are in the position to formulate in terms of multivector fields the condition of
a distributionE onM to be integrable. A distribution is integrable if every point ofM
belongs to some integral manifold ofE. Let the distributionE be spanned by a setW
of vector fields onM at every point. Then[10, Theorem 3.25]E is integrable ifW is
involutive, i.e. is closed under the Lie bracket of vector fields, and ifE is of constant rank
along the flow lines of all the vector fields ofW. Conversely, the tangent vectors of a given
submanifold define local vector fields that span a distribution of constant rank and which
are in involution.

Lemma A.2. Let XE be a multivector field that is associated with ak-dimensional dis-
tribution E on some manifoldM. ThenE is integrable if and only if there arek linearly
independent local vector fieldsXi that satisfy
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[Xi,X] = λiX, λi ∈ C∞(M), (A.4)

where[·, ·] denotes the Schouten bracket, which is a extension of the Lie bracket of vector
fields[17]. For decomposablen-vectors, it is given by

[X, Y ] =
p∑

i=1

q∑
j=1

(−)i+j [Xi, Yj ] ∧ X1 ∧ · · · X̂i · · ·Xp ∧ Y1 ∧ · · · Ŷj · · ·Yq. (A.5)

Proof. Using (A.5) one verifies that [Xi,X] = λiX iff [ Xi,Xj ] = f k
ij Xk, but the latter

condition means that the collection of allXi define a distribution which is stable under the
involutive closure of theXi . �
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